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Abstract

We present a study of correlations between D and D mesons produced in

500 GeV/c ��-nucleon interactions, based on data from experiment E791 at

Fermilab. We have fully reconstructed 791 � 44 charm meson pairs to study

correlations between the transverse and longitudinal momenta of the two D

mesons and the relative production rates for di�erent types of D meson pairs.

The experimental distributions are compared to a next-to-leading-order QCD

calculation and to predictions of the Pythia/Jetset Monte Carlo event gen-

erator. We observe less correlation between transverse momenta and di�erent

correlations between longitudinal momenta than these models predict for the

default values of the model parameters. Better agreement between data and

theory might be achieved by tuning the model parameters or by adding higher

order perturbative terms, thus contributing to a better understanding of charm

production.

The relative production rates for the four sets of charm pairs, D0D0,

D0D�, D+D0, D+D�, as calculated in the Pythia/Jetset event generator

with the default parameters, agree with data as far as the relative ordering,
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but predict too many D0D0 pairs and too few D+D� pairs.

Typeset using REVTEX
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I. INTRODUCTION

Using data from experiment E791 at Fermilab, we reconstruct pairs of charm mesons

produced in 500 GeV/c ��-nucleon interactions, where
p
s = 30:6 GeV, and use correlations

between the mesons to probe two aspects of the hadroproduction of mesons containing

a heavy quark: the dynamics of the production of heavy quark-antiquark pairs and the

subsequent hadronization of the quarks into hadrons. Correlations between the D and D

momenta transverse to the beam direction are sensitive to corrections to the leading-order

calculations of the cc cross section. Correlations between the longitudinal momenta, as well

as di�erences in the production rates of the four types of DD pairs (D0D0, D0D�, D+D0,

and D+D�), provide information regarding the role of the remnants of the colliding hadrons

in the hadronization process that transforms the charm quarks into charm mesons.

In most studies of the hadroproduction of charm particles, distributions for single charm

particles are used to probe the underlying production physics [1,2]. The variables used to

describe the single particle distributions are the transverse momentum with respect to the

beam direction, pt, and either the rapidity y or the Feynman scaling variable xF , where

y � 1

2
ln

�
E + pz
E � pz

�
and (1)

xF � pz=p
max
z � 2pz=

p
s: (2)

E and pz are the center-of-mass energy and longitudinal momentum of the charm particle

and
p
s is the total center-of-mass energy. The center of mass is that of the pion-nucleon

system. Such single charm studies are insensitive to correlations between the two charm

hadrons in a single event.

We have fully reconstructed 791 � 44 DD pairs. Based on this sample, we present

background-subtracted, acceptance-corrected distributions for the following variables:

1. the invariant mass of the pair of charm mesons, MDD;
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2. the square of the vector sum of the transverse momenta, with respect to the beam

direction, of the D and D mesons (p2
t;DD

� j~pt;D + ~pt;Dj2);

3. correlations between xF;D and xF;D, as well as yD and yD;

4. �xF � xF;D � xF;D and �xF � xF;D + xF;D;

5. �y � yD � yD and �y � yD + yD;

6. correlations between the squares of the magnitudes of the transverse momenta of the

D and D mesons, p2t;D and p2
t;D
;

7. �p2t � jp2t;D � p2
t;D
j and �p2t � p2t;D + p2

t;D
;

8. the azimuthal separation between the momentum vectors of the D and D mesons in

the plane perpendicular to the beam direction, �� � (minimum of j�D � �Dj and
360� � j�D � �Dj);

9. correlations between the azimuthal separation (��) and the scalar sum and di�erence

of the D and D transverse momenta, �p2t and �p2t ;

In addition, this paper reports the relative production rates for each type of DD pair

(D0D0, D0D�, D+D0, and D+D�), and compares the rapidity correlations for the various

DD pair combinations.

We also investigate the extent to which the observed charm-pair correlations can be du-

plicated by simply convoluting the observed single charm particle distributions. In addition,

we compare our measured distributions to three sets of theoretical predictions:

1. the distributions of cc pairs from a next-to-leading-order perturbative QCD calculation

by Mangano, Nason and Ridol� [3,4];

2. the distributions of cc pairs from the Pythia/Jetset Monte Carlo event generator

[5] which uses a parton-shower model to include higher-order perturbative e�ects [6];

and
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3. the distributions of DD pairs from Pythia/Jetset which uses the Lund string model

to transform cc pairs to DD pairs [7].

In Table I, we compare the E791 charm-pair sample to those from other �xed-target

experiments (both hadroproduction and photoproduction). The largest previous sample of

fully-reconstructed hadroproduced charm pairs used to study correlations is 20 pairs from the

CERN ��-nucleon experiment NA32 [10]. Some studies have been conducted with partially-

reconstructed charm hadrons, in which the direction but not necessarily the magnitude of

the charm particle momentum is determined directly. NA32 partially reconstructed 642

such charm pairs [11]. In photoproduction experiments, the largest sample of charm pairs

reconstructed is from the E687 data [15], with 325 fully-reconstructed and 4534 partially-

reconstructed charm pairs. In the E687 partially-reconstructed sample, one D meson is fully

reconstructed and the momentum vector of the other charm meson is determined by scaling

the momentum vector of low-momentum charged pions from the decays D�� ! D0��.

In the analysis presented here, we have completed an extensive study of acceptance cor-

rections. Acceptance corrections are made as a function of the eight variables that describe

the D and D degrees of freedom: ((y; pt; �; n)D; (y; pt; �; n)D). Here n is the number of

decay tracks from the D meson. Corrections are also made for the branching fractions of

the reconstructed D and D decay modes.

We performed a maximum likelihood �t to the two-dimensional reconstructed candidate

D mass distribution, including terms in the likelihood function for the true DD pairs that

are the signal of interest, and also terms for combinations of a true D with background,

combinations of a true D with background, and combinations of two background candidates

in the same event. From the full data set, the resulting number of true fully reconstructed

DD pairs was 791�44. In making the distributions for single-charm and charm-pair physics

variables, a likelihood �t was performed for each bin of the relevant physics variable.

Since we fully reconstruct both the D and D meson, our results have fewer systematic

errors than previously published results based on partially reconstructed pairs. In particular,
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we do not need to correct for missing tracks or possible contamination from baryons.

In the next section, we review the current theoretical understanding of the hadropro-

duction and hadronization of charm quarks. In the Appendix, we use both theoretical

calculations and phenomenological models to investigate the dependence of various measur-

able properties of charm production on higher-order QCD e�ects, the charm quark mass,

the parton distribution functions, the factorization scale and the renormalization scale. In

Sec. III, we describe the E791 detector and data processing. In Sec. IV, we describe the

optimization of selection criteria for charm pairs. We discuss the extraction of background-

subtracted distributions and corrections for acceptance e�ects in Sec. V. In Sec. VI, we

present the measured distributions for the charm pairs and compare them to the distribu-

tions predicted by (uncorrelated) single-charm distributions and to theoretical predictions.

We summarize our results in Sec. VII.

II. THEORETICAL OVERVIEW

The charm quark is the lightest of the heavy quarks. Its relatively small mass ensures

copious charm particle production at energies typical of �xed-target hadroproduction exper-

iments. Its relatively large mass allows calculation of the large-momentum-transfer processes

responsible for producing cc pairs using perturbative quantum chromodynamics (QCD). The

consequence of the charm quark being the lightest heavy quark | more speci�cally, having a

mass not su�ciently larger than �QCD | is that there are considerable uncertainties associ-

ated with these calculations. Such large theoretical uncertainties, combined with conicting

experimental results from early charm hadroproduction experiments, have made system-

atic comparisons between theory and data di�cult to interpret. Recent calculations of the

full next-to-leading-order (NLO) di�erential cross sections by Mangano, Nason and Ridol�

(MNR) [3] and others, as well as unprecedented numbers of charm particles reconstructed

by current �xed-target experiments, have allowed more progress to be made in this �eld.

In this section, we outline the theoretical framework used to describe the hadroproduc-
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tion of charm pairs, focusing on the framework used by the following two packages: the

FORTRAN program HVQMNR [4], which implements the MNR NLO perturbative QCD

calculation for charm quarks, and the Pythia/Jetset Monte Carlo event generator [5],

which makes predictions for charm particles based on leading order parton matrix elements,

parton showers and the Lund string fragmentation model. In the Appendix we examine

predictions from these two packages for the same beam type and energy as E791 for a wide

range of theoretical assumptions to determine how sensitive the theoretical predictions are

to

1. the inclusion of higher order terms (�3s or parton shower contributions); and

2. non-perturbative e�ects, including

(a) variations in parameters such as the mass of the charm quark and alternative

parton distribution functions;

(b) changes in the factorization and renormalization scales; and

(c) other non-perturbative e�ects (hadronization and intrinsic transverse momentum

of the colliding partons).

A. Charm Quark Production

Both the HVQMNR and Pythia/Jetset packages use a perturbative QCD framework

to obtain the di�erential cross section for producing a cc pair:

d�cc =
X
i;j

Z
dxb dxt f

b
i (xb; �F ) f

t
j(xt; �F ) d�̂ij(xbPb; xtPt; pc; pc;mc; �R); (3)

where

� Pb (Pt) is the momentum of the beam (target) hadron in the center of mass of the

colliding hadrons;

� xb (xt) is the fraction of Pb (Pt) carried by the hard-scattering parton from the beam

(target) hadron;
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� f bi (f
t
i ) is the parton distribution function for the beam (target) hadron;

� �R, the renormalization scale, and �F , the factorization scale, come from the pertur-

bative QCD renormalization procedure which transforms the QCD coupling constant

g =
p
4��s and the �� and nucleon wave functions from \bare" (in�nite) values to

physical (i.e., �nite and measurable) values;

� d�̂ij is the di�erential cross section for two hard-scattering partons to produce a pair

of charm quarks, each with mass mc, and with four-momenta pc and pc.

Leading order (�2s) contributions to the cc cross section require the charm and anticharm

quarks to be produced back-to-back in the center of mass of the cc pair. The (unknown) par-

tonic center of mass is boosted in the beam direction with respect to the (known) hadronic

center of mass. This boost smears the longitudinal momentum correlation while preserving

the transverse correlation. Therefore, leading order calculations predict delta function distri-

butions (i.e., maximal correlations) for variables which measure transverse correlations, such

as ��cc = 180� and p2t;cc = 0, but predict small correlations in the longitudinal-momentum

correlation variables �xF , �xF , �y and �y.

These leading-order predictions are altered by the inclusion of higher order e�ects. The

HVQMNR program adds the NLO (�3s) corrections to the leading order calculation. NLO

processes such as gg ! ccg produce cc pairs that are no longer back-to-back, smearing the

leading order delta function distributions for ��cc and p
2
t;cc.

The Pythia/Jetset event generator accounts for higher order perturbative QCD ef-

fects via a \parton shower" approach [17]. In this approach each of the two incoming and

two outgoing partons, whose distributions are based on leading-order matrix elements, can

branch | backwards and forwards in time respectively | into two partons, each of which

can branch into two more partons, etc. This evolution continues until a small momentum

scale is reached. In addition, the Pythia/Jetset event generator gives the hard-scattering

partons an intrinsic transverse momentum kt. Both the parton showers and the intrinsic

transverse momentum tend to smear the transverse correlations, as shown in the Appendix.
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The extent to which transverse-momentum correlations are smeared provides a measure

of the importance of higher order perturbative e�ects. In addition, since the leading or-

der calculation predicts very little longitudinal-momentum correlation, an enhancement of

the longitudinal-momentum correlation also provides evidence for higher order perturbative

e�ects or non-perturbative e�ects such as hadronization, described below.

B. Hadronization

The process whereby charm quarks are converted to hadrons is known as hadronization

or fragmentation. Since this process occurs at an energy scale too low to be calculable by

perturbative QCD, fragmentation functions are used to parameterize the hadronization of

the charm quark. Such functions have been measured by several e+e� experiments. The

hadroproduction environment in ��-N interactions, however, is quite di�erent from the e+e�

environment. In e+e� interactions, the light quarks in the produced charm hadrons must

come from the vacuum. Hadroproduction leaves light quark beam and target remnants which

are tied by the strong force to the charm quarks. Interactions between these remnants and

the charm quarks can dramatically a�ect the momentum and avor of the observed charm

hadrons.

The Pythia/Jetset event generator uses the Lund string fragmentation framework,

described in the Pythia/Jetset manual [5], to hadronize the charm quarks. To illustrate

this model we consider an example from E791 where a gluon from a �� and a gluon from a

nucleon in the target interact to form a cc pair. This accounts for � 90% of the theoretical

cross section for 500 GeV/c ��-N interactions. After the gluon-gluon fusion, the remnant ��

and nucleon are no longer color-singlet particles. The remnant �� is split into two valence

quarks, and the remnant nucleon into a valence quark plus a diquark. Given this minimal

set of partons | (c, c), (u; d)�, and (qq; q)N | the two dominant ways to make color-singlet

strings, and the ones PYTHIA uses are [18]:

(c; u�); (c; qN); and (d�; qqN); or (4)
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(c; d�); (c; qqN); and (u�; qN ):

In the center of mass of a particular qq system, such as cd, the c and d are moving apart

along the string axis. As they move apart, energy is transferred to the color �eld. When

this energy is great enough, qq pairs are created from the vacuum with equal and opposite

transverse momentum (with respect to the string axis) according to a Gaussian distribution.

The transverse momentum relative to the string axis of the resulting cq meson is determined

by the q quark since the c contributes none. The longitudinal momentum of the meson is

given by a fragmentation function which describes the probability that a meson will carry o�

a fraction z of the available longitudinal momentum. By default, heavy quark fragmentation

is performed according to a Lund fragmentation function [7] modi�ed by Bowler [19]:

f(z) / (1� z)a

z1+bm
2
Q

exp

��bm2
t

z

�
(5)

where m2
t �M2

h + p2t is the transverse mass of the hadron and mQ is the mass of the heavy

quark. The default Pythia/Jetset settings are a = 0:3 and b = 0:58 (GeV=c2)�2.

When the remaining energy in the string drops below a certain cuto� (dependent on the

mass of the remaining quarks) a coalescence procedure is followed, which collapses the last

partons into a hadron while conserving energy. The entire string system is then boosted

back into the lab frame. In the case of a (c; d�) or (c; u�) string, this boost will tend to

increase the longitudinal momentum of the charm hadron with respect to the charm quark

since the d� and u� will tend to have large longitudinal momentum. The opposite will occur,

however, for a (c; qN) string.

In some fraction of events, strings will be formed with too little energy to generate qq

pairs from the vacuum. In these cases the c quark (antiquark) will coalesce into a single

meson with the beam antiquark (quark) or will coalesce into a single baryon (meson) with the

target diquark (\bachelor" quark). This will tend to enhance production of charm hadrons

with a light quark in common with a valence beam quark in the forward direction (beam

fragmentation region) and production of charm hadrons with a light valence quark or diquark

in common with the target in the target fragmentation region. This phenomenon has been
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used to explain the leading particle e�ect seen in charm hadroproduction experiments [20]{

[25].

However, in most events, the string has su�cient energy1 to produce at least one qq pair

from the vacuum. In this type of beam/target \dragging," the strength of the dragging is

not dependent on the light quark content of the produced particle.

These e�ects are evident in Fig. 1, which shows a scatter plot of the charm and anticharm

rapidities for Pythia/Jetset DD events.2 Comparison of the scatter plot of the charm and

anticharm quark rapidities, Fig. 1a, to the scatter plot of the D and D rapidities, Fig. 1b,

clearly demonstrates that signi�cant correlations are introduced by hadronization.

Both the degree of correlation between the D and D longitudinal momenta as well

as di�erences in production of the four types of DD pairs | D0D0, D0D�, D+D0 and

D+D� | provide information about the charm quark hadronization process in a hadronic

environment.

III. EXPERIMENT E791

The results reported in this paper are based on a data sample recorded by Fermilab

experiment E791 during the 1991/92 �xed-target run. The E791 spectrometer is illustrated

in Fig. 2. A 500 GeV/c �� beam impinged on platinum and carbon targets. The spec-

trometer consisted of proportional wire chambers (PWC's) and silicon microstrip detectors

(SMD's) upstream and downstream of the targets, two magnets, 35 drift chamber (DC)

planes, two �Cerenkov counters, an electromagnetic calorimeter, a hadronic calorimeter and

a muon detector composed of an iron shield and two planes of scintillation counters.

The spectrometer was an upgraded version of the apparatus used in Fermilab experiments

1In contrast, at high xF most of the particle energy is taken up by the individual partons, so that

the string has insu�cient energy to produce qq pairs, and large asymmetries are seen by experiments.

2Default values are used for all Pythia/Jetset parameters.
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E516, E691, and E769 [26]. The major di�erences between the earlier versions and E791 were

the addition of more planes of SMD's, enhancement of the muon identi�cation system, new

front-end detector-signal digitizers and a new data acquisition system. The most important

parts of the spectrometer for this analysis are the charged-particle tracking system and the

threshold �Cerenkov counters.

A. Target

The target consisted of �ve foils with center-to-center separations that varied from 14.8

to 15.4 mm. The most upstream foil was 0.5 mm thick and was made of platinum to provide

a signi�cant interaction probability in a thin target. The next four foils were 1.6 mm thick

and were made of industrial diamond. The low Z of these carbon targets minimized multiple

scattering, while the higher density of diamond permitted thinner downstream targets for

the same interaction probability. The total pion interaction length of all �ve targets was

about 1.9%. This target arrangement was chosen so that most of the particles with lifetimes

and momenta within the range of interest to this experiment have a decay vertex in the

gaps, where there is less background from secondary interactions.

B. The Spectrometer

The �� beam particle was tracked with eight PWC planes and six SMD planes upstream

of the target region. Downstream of the targets, the charged-particle tracking system con-

sisted of 17 SMD planes, two PWC planes, and 35 drift chamber planes. In general several

planes of tracking chambers with di�erent angular orientations around the beam axis were

grouped together in each tracking station to provide hit ambiguity resolution. The various

coordinates (x, y, w, u, v) measured by the planes in the tracking chamber stations were

de�ned relative to a right-handed coordinate system x� y � z in which increasing z was in

the beam direction, x was the horizontal dimension and y increases vertically upward. The
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w, u and v axes were rotated by +60�, +20:5�, and �20:5� with respect to the positive x

axis. The spectrometer was approximately centered on the beam line.

The beam PWC's [27] had a wire spacing of 1 mm and were arranged in two stations

widely separated in z to measure the angle of the incoming beam particle with high precision.

The �rst station was 31 m upstream, and the second was 12 m upstream of the last carbon

target. Each station consisted of 4 planes: two staggered x planes, a y plane and a w plane.

The beam SMD's had a pitch of 25 �m and were also arranged in two stations, each with

an x, y and w plane. The �rst SMD station was 80 cm upstream of the most downstream

target, and the second station was 30 cm upstream of this target. The system of SMD's

downstream of the targets started 2.8 cm downstream of the last target and extended for

45 cm. It had a maximum angular acceptance of about �125 mr in both x and y. Each

of the �rst two planes (x and y) had an active area of 2.5 cm by 5 cm, a pitch of 25 �m

in the central 9.6 mm and 50 �m in the outer regions, and an e�ciency of about 84%.

The next nine planes were identical to those used in E691 [28]. Each plane had a pitch of

50 �m, and an e�ciency from 88% to 98%. They were instrumented to give an acceptance

of �100 mrad with respect to the center of the most downstream target. They measured

x � y � v � y � x � v � x � y � v coordinates respectively. The �nal six SMD planes had

active areas of 9 cm by 9 cm. The inner 3 cm had a pitch of 50 �m while the outer regions

had an e�ective pitch of 200 �m. These measured v � x � y � x � y � v coordinates. The

e�ciencies ranged from 96% to 99%.

The drift chambers were arranged in four stations as illustrated in Fig. 2. Each station

was subdivided into substations with plane orientations such that an x� y � z space point

could be reconstructed in each substation. The characteristics of these chambers are given

in Table II. Since the beam, which operated at about 2 MHz throughout the run, passed

through the center of the drift chambers in a small region instrumented with very few wires,

each plane had a central ine�cient region in which the e�ciency decreased to < 10% and

the resolution was degraded by as much as a factor of four. The pro�le of the e�ciency

and resolution degradation region was approximately gaussian in an angular region of three
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to four mrad centered on the beam. The extent of the ine�cient region increased with

time during the run and is the major source of systematic uncertainty associated with the

acceptance at large xF . Each substation of the �rst drift chamber station was augmented

by a PWC which measured the y coordinate. These PWC's had a wire spacing of 2 mm.

Typical inclusive single charm acceptances for two, three, and four particle D decays are

shown in Fig. 3.

Momentum analysis was provided by two dipole magnets that bent particles in the same

direction in the horizontal plane. The transverse momentum kicks were 212 MeV/c for the

�rst magnet and 320 MeV/c for the second magnet. The centers of the two magnets were

2.8 m and 6.2 m downstream of the last target, respectively. The x� y � z aperture of the

pole faces of the �rst magnet was 183 cm by 81 cm by 100 cm and that of the second magnet

was 183 cm by 86 cm by 100 cm.

Two segmented, gas-�lled, threshold �Cerenkov counters [29] provided particle identi�ca-

tion over a large range of momenta. The threshold momenta above which a charged particle

emits light were 6, 20 and 38 GeV/c for �'s, K's, and p's, respectively, for the �rst counter,

and 11, 36, and 69 GeV/c for the second. The particle identi�cation algorithm correlates

the �Cerenkov light observed in a given mirror-phototube segment with the charged particle

tracking information. The algorithm indicates the likelihood that a charged particle of a

given mass could have generated the observed �Cerenkov light in the segment(s) in question.

The electromagnetic calorimeter, which we called the Segmented Liquid Ionization

Calorimeter (SLIC), consisted of 20 radiation lengths of lead and liquid scintillator and

was 19 m from the target. Layers of scintillator counters 3.17 and 6.24 cm wide were

arranged transverse to the beam and their orientations alternated among horizontal and

�20:5� with respect to the vertical direction [30]. The hadronic calorimeter consisted of six

interaction lengths of steel and acrylic scintillator. There were 36 layers, each with a 2.5-

cm-thick steel plate followed by a plane of 14.3-cm-wide by 1-cm-thick scintillator slats; the

slats were arranged alternately in the horizontal and vertical directions, and the upstream

and downstream halves of the calorimeter were summed separately [31]. The signals from
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the hadronic calorimeter as well as those from the electromagnetic calorimeter were used

for electron identi�cation. Signals from both calorimeters were used to form the transverse

energy requirement in the hardware trigger [32]. Electron identi�cation was not used in this

analysis.

Muons were identi�ed by two planes of scintillation counters located behind a total of

15 interaction lengths of shielding, including the calorimeters. The �rst plane, 22.4 m from

the target, consisted of twelve 40-cm-wide by 300-cm-long vertical scintillation counters in

the outer region and three counters 60 cm wide in the central region. The second plane,

added for E791, consisted of 16 scintillation counters 24.2 m from the target. These counters

were each 14 cm wide and 300 cm long, and measured position in the vertical plane. These

counters were equipped with TDC's which provided information on the horizontal position

of the incident muons [32]. Muon identi�cation was not used in this analysis.

C. Trigger and Data Acquisition

To minimize biasing the charm data sample, the trigger requirements were very loose.

The most signi�cant requirements were that the signal in a scintillation counter downstream

of the target be at least four times the most likely signal from one minimum-ionizing particle,

and that the sum of the energy deposited in the electromagnetic and hadronic calorimeters,

weighted by the sine of the angle relative to the beam, be above a threshold corresponding

to 3 GeV of transverse energy. The time for the full hardware trigger decision was about

470 ns. This trigger was essentially 100% e�cient for charm decays.

A total of 24,000 channels were digitized and read out in 50 �s with a parallel-architecture

data acquisition system [33]. Events were accepted at a rate of 9 kHz during the 23-second

Tevatron beam spill. The typical recorded event size was 2.5 kbytes. Data were written

continuously (during both the 23-second spill and the 34-second interspill periods) to forty-

two Exabyte [34] model 8200 8-mm-tape drives at a rate of 9.6 Mbytes/s. Over 2 � 1010

hadronic interactions were recorded on 24,000 tapes.
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D. Data Processing

The 2� 1010 interactions recorded constitute about 50 Terabytes of data. Event recon-

struction and �ltering took place over a period of two and a half years at four locations: the

University of Mississippi, The Ohio State University (moved to Kansas State University in

1993), Fermi National Accelerator Laboratory, and O Centro Brasileiro de Pesquisas F��sicas,

Rio de Janeiro (CBPF). The �rst three sites used clusters of commercial UNIX/RISC work-

stations controlled from a single processor with multiprocessor management software [35],

while CBPF used ACP-II custom-built single-board computers [36].

As part of the reconstruction stage, a �lter was applied which kept �20% of the events.

This �lter was e�ectively an o�ine trigger. To pass this �lter, an event was required to have

a reconstructed primary production vertex whose location coincided with one of the target

foils. The event also had to include at least one of the following:

1. At least one reconstructed secondary decay vertex of net charge 0 for an even number

of decay tracks and �1 for an odd number of decay tracks. The longitudinal separation
of the secondary vertex from the primary had to be at least four sigma for secondary

vertices with three or more tracks and at least six sigma for vertices with two tracks,

where sigma is the error in the separation,

2. At least one reconstructed Ks ! ���+ or �! p� candidate whose decay was observed

upstream of the �rst magnet,

3. and for part of the run, at least one reconstructed �! K+K� candidate.

For one-third of the data sample, several other classes of events were also kept, most impor-

tantly:

4. Events in which the net charge of all the reconstructed tracks was negative and their

total momentum was a large fraction of the beam momentum.

5. Ks ! ���+ or �! p� candidates that decayed inside the aperture of the �rst magnet.
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Following the initial reconstruction/�lter, which was applied to all events, additional selec-

tions of events were made to further divide the large data sample into subsets by class of

physics analysis.

E. Detector Performance

The important detector performance characteristics for this analysis are the resolution

for reconstructing the positions of both the primary interaction and secondary decay ver-

tices, the e�ciency for reconstructing the trajectories of charged particles, the resolution

for measuring charged track momenta, and the e�ciency and the misidenti�cation rates for

identifying charged pions and kaons using information from the �Cerenkov counters.

The resolution for measuring the position of the primary vertex along the beam direction

varies from about 240 �m for the most downstream target foil to 450 �m for the upstream foil.

The variation is due to the extrapolation from the SMD system and to multiple scattering

in material downstream of the interaction. The mean number of reconstructed tracks used

to �t the primary vertex is seven. The measured secondary vertex resolution depends on

the decay mode, the momentum of the D, and the selection criteria. For example, the

vertex resolutions along the beam direction for K��+ and K��+���+ are 320 and 395 �m,

respectively, for a mean D0 momentum of 65 GeV/c, and worsen by 33 and 36 �m for every

10 GeV/c increase in D0 momentum.

The total e�ciency, including acceptance, for reconstructing charged tracks is approx-

imately 80% for particles with a momentum greater than 30 GeV/c and drops to around

60% for particles of momentum 10 GeV/c. For tracks which pass through both magnets

and have a momentum greater than 10 GeV/c, the average resolution for measuring charged

particle momentum p is �p=p = 0:6% � (0:02p)% where � stands for the quadratic sum,

and p is in GeV/c. Tracks which pass through only the �rst magnet have a resolution

�p=p = 2% � (0:1p)%. The mean D mass resolution for hadronic decays to two, three and

four charged particles varies from 13 to 8 MeV/c2 as the decay multiplicity increases. The
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mass resolution varies by about a factor of 2 between low and high momentum D mesons.

In most E791 analyses, the �Cerenkov counters play a very important role [37]. However,

in this analysis with the two fully reconstructed D-meson decays, the �Cerenkov counters

play a minimal role. We use the �Cerenkov counters for charged kaon identi�cation. The

kaon identi�cation e�ciencies and misidenti�cation probabilities vary with longitudinal and

transverse momentum and with the signatures required in the �Cerenkov counters. For typical

particle momenta in the range 20 GeV/c to 40 GeV/c, and for the nonstringent criteria used

for some of the �nal states, in this analysis, the �Cerenkov identi�cation e�ciency for a kaon

ranged from 64% to 72% while the probability for a pion to be misidenti�ed as a kaon ranged

from 6% to 12%.

A complete Monte Carlo simulation of the apparatus was used in this analysis to calcu-

late the e�ciency and investigate systematic e�ects. The simulation included all relevant

physical processes such as multiple interactions and multiple scattering as well as geometrical

apertures and resolution e�ects. It produced data in the same format as the real experiment.

That Monte Carlo data was then reconstructed and analyzed with the same software as the

real data.

IV. EVENT SELECTION

In each E791 event, we search for two charm mesons (D0, D0, D+ or D�) decaying to

Cabibbo-favored �nal states that can be reconstructed with relatively high e�ciency: D0 !
K��+, D0 ! K��+���+, D+ ! K��+�+, and the charge conjugate modes.3 To optimize

the e�ciency for reconstructing charm pairs, we search for bothD candidates simultaneously,

rather than searching for the two candidates consecutively. In such a simultaneous search,

we can require that one candidate or the other satisfy a fairly stringent selection criterion

based on a particular variable used to discriminate charm decays from background, or that

3Unless noted otherwise, charge conjugate modes are always implied.
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both candidates satisfy less stringent criteria.

We start with a sample of events, each containing two candidate K��+, K��+�+ or

K��+���+ combinations with invariant mass between 1.7 and 2.0 GeV=c2, and rapidity in

the range �0:5 < yD;D < 2:5. These candidates are found by looping over all reconstructed

tracks. The primary vertex is then re�t after removing tracks which are associated with

either candidate. No particle identi�cation requirements are applied at this time. Candidates

are rejected if any charged track, the primary vertex or either of the two secondary vertices

do not meet minimal �t quality criteria. The sample of candidate pairs that pass just these

criteria is dominated by combinatoric backgrounds. To choose further selection criteria, we

use this sample to represent background. To represent signal, we use reconstructed charm

pairs generated with the Monte Carlo program described at the end of the previous section.

We then search for selection criteria that provide optimal discrimination between signal and

background.

In order to extract the signal, we use selection criteria de�ned by discrimination vari-

ables (properties of the candidate event) and minimum or maximum allowed values for each

variable. For candidate pairs with the same �nal states (i.e., both K�, both K��, or both

K���), the same discrimination variables and maximum or minimum values are used for

both candidate D's; for pairs with di�erent �nal states, the discrimination variables are

allowed to be di�erent for the two candidate D's. The selection criteria can be applied to

both candidate D's, or to one or the other.

The discrimination variables used address the following questions. Is a D candidate

consistent with originating from the primary interaction vertex? Is the vertex formed by the

decay products of a D candidate well separated from the primary interaction vertex and not

inside a target foil? Do any of the decay products of the D candidate appear to originate

from the primary interaction vertex or from the other D candidate vertex? Is the scalar sum

of the squares of the transverse momenta of the D candidate decay products, with respect to

the D candidate trajectory, indicative of a heavy meson decay? Is the �Cerenkov information

for the kaon candidate consistent with that for a real kaon?
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To optimize the signi�cance of the signal, we repeatedly choose the selection criterion that

maximizes NS=
p
NS +NB while rejecting no more than 5% of the (Monte Carlo) signal. NS

is the number of signal pairs satisfying the selection criterion, determined by Monte Carlo

simulation, and NB is the number of background pairs, determined from the data. This

requires properly normalizing the number of signal pairs in the Monte Carlo to the number

of signal pairs in the data. When the background becomes dominated by pairs with only

one true D decay, we exclude from the background sample only those pairs in which both

D candidates lie in a narrow range around the D mass.

We iterate the procedure of �nding the optimal selection criterion (always allowing vari-

ables to be reused in subsequent iterations) until the signi�cance of the signal no longer

increases. The selection criteria are optimized separately for each of �ve decay topologies of

DD pairs: 2-2, 3-3, 2-3, 2-4 and 3-4, where each integer represents the number of charged

particles in the decay.4 We �nd that selection criteria are more often applied to one D

candidate or the other, rather than to both, especially early in the optimization procedure.

In several cases, a criterion will be applied to one of the D candidates, and a more stringent

criterion involving the same discrimination variable will be applied to the other.

After optimizing our selection criteria, we end up with a sample of 9254 events in the data

with both D candidates in the mass range 1.7 to 2.0 GeV=c2 and in the rapidity range �0:5
to 2:5. Only pairs in which the two D candidates have opposite charm quantum numbers

are included in this sample. No signi�cant signal for DD or DD pairs is observed. In

Fig. 4, we plot the mass of the D candidate versus the mass of the D candidate, for all �ve

types of pairs. Three types of candidate pairs are evident in this scatter plot. Combinatoric

background pairs consisting of a fake D and a fake D candidate are spread over the entire

plot. The density of these points decreases linearly with increasing candidate-D mass. Pairs

4We also searched for 4-4 pairs but the e�ciency was too low to add much to the statistical

signi�cance of the sample. We did not use these pairs in the �nal analysis.
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containing one real and one fake D candidate appear as horizontal and vertical bands (called

D and D ridge events, respectively). In the center of the plot, we see an enhancement due

to the crossing of the two bands and due to real pairs of D mesons.

V. DATA ANALYSIS

In this section we describe the analysis procedures by which we determine the number

of signal events in the full data sample shown in Fig. 4, as well as in each bin of the physics

variables used to study the charm-pair production. Acceptance corrections include geo-

metric acceptance, relative branching ratios, reconstruction e�ciencies, and event selection

e�ciencies.

A. Determination of Yields

The experimental resolution for the D mass measurement in the E791 spectrometer

depends on both the D decay mode and the xF of the D meson, and the mean reconstructed

mass depends on the decay mode. Therefore, we �t to the normalized D mass de�ned as

Mn �
M �MD

�M
; (6)

where M is the measured mass, MD is the mean measured mass for the particular decay

mode of the D candidate, and �M is the experimental resolution for the particular decay

mode and xF of the D candidate. The average resolution varies between 8 and 13 MeV for

di�erent decay modes. It varies by about a factor of 2 between low and high xF .

In this analysis we use the maximum likelihood method which assumes we have N inde-

pendent measurements of one or more quantities and that these quantities ~z are distributed

according to some probability density function f(~z; ~�) where ~� is a set of unknown parame-

ters to be determined. To determine the set of values ~� that maximizes the joint probability

for all events, we numerically solve the set of equations [38]:
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@ lnL(~�)

@�j
= 0 where L(~�) =

NY
i=1

f(~zi; ~�):

The quantities that we measure for each event are the normalized mass of both the D and

D candidate; i.e., ~z = (MK�m1�
n , MK+m2�

n ). The unknown parameters in the maximum like-

lihood �t are the number of signal events, combinatoric events, D-ridge events, and D-ridge

events | NS, NC , ND, and ND, respectively | and the slopes of the background K�m1�

and K+m2� distributions | SD and SD, respectively. That is, the unknown parameters

are

~� = (NS; NC ; ND; ND; S
D; SD):

The terms K�m1� and K+m2� refer to D or D decays into a kaon and mi pions.

We construct our probability density function using the following two assumptions: (i)

the normalized mass distribution for background K�m1� and K+m2� is linear in MK�m1�
n

and MK+m2�
n , and (ii) the normalized mass distribution of real D's and real D's is Gaussian

with mean of 0 and sigma of 1. Under these assumptions, which are correct for our data, the

probability density functions | normalized to unity in the two-dimensional window de�ned

by jM (K�m1�)
n j < 6:5 and jM (K+m2�)

n j < 6:5 | for each class of events is

Combinatoric background events: PC = 1=169 + SDMK�m1�
n + SDMK+m2�

n ;

D-Ridge background events: PD = ( 1
13
p
2�
+ NC

ND
SDMK+m2�

n ) e�(M
K�m1�
n )2=2;

D-Ridge background events: PD = ( 1
13
p
2�
+ NC

N
D
SDMK�m1�

n ) e�(M
K+m2�
n )2=2;

Signal events: PS =
1
2�e

�((MK�m1�
n )2+(M

K+m2�
n )2)=2:

The distribution for each set of events is NiPi. The overall probability density function is

then
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f(~z; ~�) =
NCPC +NDPD +NDPD +NSPS

NC +ND +ND +NS
:

In this analysis, we use the extended maximum likelihood method [39, pg. 249] in which

the number of DD candidates found, NDD, is considered to be one more measurement with a

Gaussian probability distribution G(NDD; �) of mean � = NC+ND+ND+NS and � =
p
�.

Our likelihood function is then

L = G(NDD; �)

N
DDY
i=1

f(~zi; ~�): (7)

To maximize the likelihood, we use the function minimization and error analysis FOR-

TRAN package MINUIT [38]. Figure 5 shows the function NDDf(~z; ~�) that maximizes the

likelihood function for the �nal sample of DD candidates from Fig. 4 with jMnj � 6:5, the

mass range used for all �ts in this analysis. The projections of the �t onto the D and D axes

are compared to the data in Fig. 6. The projected background contains both ridge events

(one real D and one combinatoric background) and events with two combinatoric back-

ground candidates. Therefore, the background under the charm-pair signal in the projected

distribution is a linear distribution plus a Gaussian distribution, shown as the dotted line in

the �gure. The net charm-pair signal is shown as the residual after background subtraction.

B. Acceptance Corrections

We determine the size of acceptance and smearing e�ects with a sample of approximately

7000 Monte Carlo simulated pairs that pass the same selection criteria as the real data. The

size of the resolution with which we measure each charm-pair physics variable is much smaller

than the range over which we bin that variable. Therefore, we ignore smearing e�ects.

We incorporate acceptance e�ects in the likelihood function for the �t by replacing the

probability pi for event i by (pi)
wi where wi is the weight for event i [40]. The weight wi is

inversely proportional to the e�ciency and is normalized such that �
N
DD

i=1 wi = NDD, where

NDD is the number of DD candidates in the �nal sample. Corrections for relative branching

fractions are also included in wi, as described below. By construction, the mean of the
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weights is equal to 1. The standard deviation of the weights is 1.3. The total number of

DD events found in the unweighted �t is Ns = 791� 44. For the weighted likelihood �t, we

�nd Ns = 910� 45.5

The e�ciency depends not only on the detector acceptance but also on the relative

branching fractions for the detected decay modes. By correcting for branching fractions, the

�nal e�ciency-corrected distributions reect the relative production rates of the four types

of DD pairs (D0D0, D0D�, D+D0, and D+D�) rather than the relative detected rates. We

use the values B(D+ ! K��+�+) = (9:1 � 0:6)%, B(D0 ! K��+���+) = (8:1 � 0:5)%,

and B(D0 ! K��+) = (4:01� 0:14)% [41].

A minimal independent set of properties that the acceptance could depend on is the

decay mode of each of the D mesons (K��+, K��+�+, or K��+���+), the rapidity y, the

transverse momentum pt, and the azimuthal angle � of each of the D mesons. In principle,

we can use Monte Carlo simulated events to determine the acceptance for a particular

candidate pair. The problem is the large number of Monte Carlo events that is needed to

span such a large space (a 30-dimensional space, six variables for each pair of decay modes

used.) However, the e�ciency function can be factorized for each combination of the D

decay modes, greatly increasing the statistical power of the Monte Carlo.

Using the Monte Carlo simulated events, we �nd that the acceptance of the D is inde-

pendent of the D and vice versa. For each one, however, the shape of the acceptance as a

function of y depends on both the number of particles in the decay, nD or nD, and, at high

y, whether the candidate decay is a D or D. The shape of the acceptance as a function of

5Since the sum of all weights is normalized to equal the number of DD candidates, the fact that

the number of signal events is signi�cantly larger for the weighted data sample indicates that, on

average, the weights for signal events are larger than for background events. Since we correct for

relative e�ciencies, not absolute e�ciencies, the absolute number of weighted signal events has no

signi�cance. It is only of interest in interpreting the �gures.
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pt depends only on the number of particles in the decay, nD or nD. It is also found that

the acceptance does not depend on the azimuthal angle � of the D or D. Therefore, the

acceptance function factorizes as follows:

A(nD; nD; yD; yD; pt;D; pt;D; �D; �D) = bnDbnDc
D
nD(yD)c

D
n
D
(yD)dnD(pt;D)dnD(pt;D): (8)

We next determine which of the variables that describe the candidate pair, and for

which the acceptance is not uniform, are correlated in the originally generated Monte Carlo.

Such correlations could a�ect the apparent acceptance from the Monte Carlo if we simply

integrate over a variable that is correlated with the variable for which we are determining

the acceptance. We �nd that the most signi�cant correlations in the Monte Carlo generator

are between the variables yD and yD, where the acceptance is not uniform, and between the

variables �D and �D, where the acceptance is uniform. Therefore, we cannot simply integrate

over yD, for example, when determining the acceptance as a function of yD. Instead, we use

the Monte Carlo to determine the two-dimensional acceptance function A(yD; yD) |which

is independent of the Monte Carlo generated correlations | for each of the possible values of

nD and nD and use this function to determine cDnD(yD)c
D
n
D
(yD) in Eq. 8. (This removes any

dependence on the physics assumptions of the Monte Carlo from this equation.) Finally,

the weight wi is calculated for each event such that it is proportional to 1
B(D)B(D)A

and

�
N
DD

i=1 wi = NDD, where NDD is the number of unweighted DD candidates in the �nal

sample. Here B is B(D+ ! K��+�+) for the charged D candidates and B is B(D0 !
K��+���+)+B(D0 ! K��+) for the neutral D candidates except for D0D0 events where

B(D0)B(D0) = B(D0 ! K��+)2 + 2B(D0 ! K��+)B(D0 ! K��+���+) due to the

exclusion of 4-4 pairs from the �nal sample.

C. Checks & Systematic Errors

Sources of systematic errors in our measurements include e�ects associated with the

�tting procedure used to obtain the yields, the �nite statistics of the Monte Carlo data
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sample used to generate the acceptance contributions to the weights, and imperfections in

our modeling of the apparatus in the Monte Carlo.

For all the measured distributions, we compared the data to the two dimensional nor-

malized mass distributions; in all cases, the �ts qualitatively match the data. (For example,

see Fig. 6.)

We also checked the �tting procedure by comparing the yields with those given by a

simple counting method. In this method the normalized mass scatterplot was divided into

regions corresponding to di�erent combinations of signal, ridge, and combinatoric back-

ground events. The number of signal events was then found by subtracting the properly

normalized number of events in the ridge and background regions from the central signal

region. The results are in agreement, but the �tting technique gave smaller statistical errors,

as expected.

The e�ect of the �nite statistics in the Monte Carlo was determined by repeating the

�ts for the yields in each kinematic bin while varying the weight of each event randomly

according to a Gaussian whose width corresponded to the statistical error on the weight. The

systematic errors on the yields generated by this process were about 20% of the statistical

errors from the �t, which are negligible when added in quadrature.

As demonstrated in Figs. 7 to 12, in most cases the weighted and unweighted distribu-

tions are very similar. Statistical errors associated with modeling the acceptance are most

important for events with large weights, but the number of events with large weights is small.

We checked the e�ect of large weights by generating distributions without the large weight

events, with no signi�cant change. The distributions were also examined with all K���

candidates eliminated, the source of most of the events with a large acceptance correction.

Again, the change did not signi�cantly a�ect the distributions.

Another potential source of systematic error is uncertainty in the modeling of the beam-

induced ine�ciency in the centers of the drift chambers. The ine�ciencies increased as the

run progressed, primarily a�ecting D's at large xF . Since most D's in the DD events are

at low to modest xF , the drift chamber ine�ciencies did not have a signi�cant e�ect on the
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relative e�ciencies used in this analysis. We checked this by comparing the experimental

results that had been e�ciency-corrected with Monte Carlo simulations corresponding to

di�erent parts of the run, and found no signi�cant di�erences.

In summary, systematic errors were found to be small relative to statistical errors.

VI. RESULTS

In this section, we present the background-subtracted, acceptance-corrected charm-pair

distributions from the data and compare them to theoretical predictions. The Appendix

contains an extensive discussion of the theoretical predictions for charm-pair distributions.

As discussed in Sec. IV, all distributions | experimental and theoretical | are obtained

after excluding any events in which the center-of-mass rapidity of either D meson or either

charm quark is less than �0:5 or greater than 2:5.

For the experimental results, the acceptance-corrected distributions are obtained from

maximizing the likelihood function with weighted events as discussed in Sec. VB. The

uncorrected distributions are obtained from maximizing the unweighted likelihood function;

the total number of signal DD events found in the unweighted �t is Ns = 791� 44.

If the two charm mesons in each DD event are completely uncorrelated, then the charm-

pair distributions contain no more information than the single-charm distributions. Before

comparing the observed distributions to theoretical predictions, we use two methods to

determine whether there exist correlations in the data. In the �rst method, described in

Section VIA, we convolute acceptance-corrected single-charm distributions to predict what

the charm-pair distributions would be if the D and D were uncorrelated. Comparing these

single-charm predictions, the measured charm-pair distributions provide one measure of the

degree of correlation between the D and D. In the second method, described in Section VIB,

we look directly for correlations by examining several two-dimensional distributions. For

example, by �nding the number of signal DD events per yD interval in several yD intervals,

we can determine whether the shape of the yD distribution depends on the value of yD.
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In Section VIC, we compare our experimental distributions to the theoretical predictions

discussed in Sec. II and in the Appendix. In Section VID, we examine integrated production

asymmetries among the four types of DD pairs | D0D0, D0D�, D+D0, and D+D� |

and compare our experimental results to the predictions from the Pythia/Jetset event

generator.

A. Single-Charm Predictions

In Fig. 7 we show the measured single-charm distributions for xF , y, p
2
t and �, as de�ned

in Sec. I. The single-charm distributions are obtained by �tting the two-dimensional nor-

malized mass distributions for only those DD pairs in which the value of the single-charm

variable for the candidate D (or D) is in the appropriate interval for each bin. In this way,

the contribution to the single-charm signal from the D and D ridge events is excluded. The

distributions shown in Fig. 7 correspond to single-charm mesons fromDD pairs in which the

center-of-mass rapidity of both charm mesons lies between �0:5 and +2:5. Each distribution

shown in Fig. 7 is obtained by summing the D and D distributions. We have checked and

found that the D and D distributions are the same within statistical errors. 6

The vertical axis of each distribution gives the fraction of signal mesons per variable v

interval, P (v) = 1
ND

dND
dv , where the total number of signal D mesons ND is simply twice the

number of signal DD events. Only a very small fraction (0% { 3%) of the signal events lie

outside any of the ranges used in Figs. 7{11.

For each single-charm variable v = xF , y, p
2
t , and � we obtain two measured charm-

pair distributions: the di�erence in v for the two D's, �v = vD � vD, and the sum of

the v's for the two D's, �v = vD + vD. (�� is de�ned to be the minimum of j�D � �Dj
and 360� � j�D � �Dj, and �� is de�ned to be �D + �D modulo 360�.) In Figs. 8{11, we

6This might not be the case if the experiment had greater statistics, or if the data sample extended

to a higher region in xF .
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compare these measured charm-pair distributions to the charm-pair distributions one would

generate from the measured single-charm distributions assuming theD andD are completely

uncorrelated, calculated as follows:

Q(�v) =

Z Z
�(�v � vD + vD)P (vD)P (vD)dvDdvD ; (9)

and

Q(�v) =

Z Z
�(�v � vD � vD)P (vD)P (vD)dvDdvD ; (10)

where P (v) refers to the single-charm distributions shown in Fig. 7.

This convolution cannot be done with previously reported inclusive single charm dis-

tributions [25] since the inclusive distributions contain events which are excluded from the

charm-pair sample, for example, events in which the xF of the unobserved D is outside the

acceptance or in which the unobserved charm particle is a charm baryon.

If the D and D in the signal DD events are completely uncorrelated, then the measured

charm-pair distributions for �v and �v should agree with the single-charm predictions, be-

cause both the charm-pair and single-charm distributions are for D mesons with exactly

the same restrictions on the rapidity of both D mesons in the event. With the exception of

the �� distribution (Fig. 11), the measured distributions are quite similar to the uncorre-

lated single-charm predictions, indicating both that the correlation between the D and D

longitudinal momenta is small and that the correlation between the amplitudes of the D

and D transverse momenta is small. The measured �xF and �y distributions, however,

are somewhat more peaked near zero than the single-charm predictions, possibly indicating

slight longitudinal correlations.

Two other commonly used charm-pair variables are the square of the net transverse

momentum of the charm pair, p2
t;DD

= j~pt;D + ~pt;Dj2, and the invariant mass of the charm

pair, MDD. The measured distributions and the uncorrelated single-charm predictions for

these two variables are shown in Fig. 12. Obtaining these single-charm predictions for p2
t;DD

and MDD is slightly more involved than for the �v and �v variables because p2
t;DD

and
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MDD are not linear functions of xF;D, xF;D, �D, �D, p
2
t;D, and p

2
t;D
. Rather, in terms of these

single-charm variables,

p2t;DD = p2t;D + p2t;D + 2
q
p2t;Dp

2
t;D

cos(�D � �D); and

MDD =

r
2M2

D + 2EDED � 2
q
p2t;Dp

2
t;D

cos(�D � �D)�
s xF;D xF;D

2
;

where the D meson energy E is

q
M2

D + p2t +
s x2

F

4 , and s is the square of the center-of-mass

energy of the colliding hadrons. We obtain single-charm predictions by randomly generating

108 DD events in which all three variables (xF , �, and p
2
t ) for both D mesons from each DD

event are selected independently and randomly from a probability density function that is

at within the bins shown in Fig. 7, and zero elsewhere. Each event is weighted by

1

jJ jP (xF;D)P (�D)P (p
2
t;D)P (xF;D)P (�D)P (p

2
t;D);

where P (v) refers to the single-charm distributions shown in Fig. 7 and jJ j is the Jacobian
determinant of the transformation from the complete and independent set of variables (xF;D,

xF;D, �D, �D, p
2
t;D, and p

2
t;D
) to the set (xF;D, xF;D, �D, �D, p

2
t;DD

, and MDD). Speci�cally,

jJ j �
�����
@(xF;D; xF;D; �D; �D; p

2
t;DD

;MDD)

@(xF;D; xF;D; �D; �D; p
2
t;D; p

2
t;D
)

����� (11)

=

���������
1 +

r
p2
t;D

p2
t;D

cos(�D � �D) 1 +

r
p2
t;D

p2
t;D

cos(�D � �D)

1
2
p
2M

DD

 
E
D

ED
�
r

p2
t;D

p2
t;D

cos(�D � �D)

!
1

2
p
2M

DD

�
ED
E
D
�
r

p2
t;D

p2
t;D

cos(�D � �D)

�
���������
:

The measured distribution forMDD agrees quite well with the uncorrelated single-charm

prediction. The measured distribution for p2
t;DD

, however, is steeper than the uncorrelated

single-charm prediction, indicating the presence of correlations between ~pt;D and ~pt;D. The

dashed histogram in Fig. 12 demonstrates that this lack of agreement is not due to the

correlations between �D and �D evident in the �� distribution in Fig. 11. This latter

prediction is obtained by assuming that xF;D and xF;D are uncorrelated and that p2t;D and
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p2
t;D

are uncorrelated, but that �D and �D are correlated as shown in Fig. 11. The correlations

in p2
t;DD

should reect similar correlations in ��, p2t;D, and p2
t;D
, since p2

t;DD
is a function of

these variables. The fact that the disagreement in Fig. 12 is not so readily explained is a

sign that the correlations can be subtle, and that there are additional correlations among

the variables. In the following section we investigate correlations between ��, pt;D, and pt;D

in more detail.

B. Two-Dimensional Distributions

A direct method for investigating whether the variables vD and vD are correlated is to

determine the number of DD signal events per vD interval for a series of vD intervals. Such

two-dimensional distributions show whether the vD distribution depends on the value of

vD, and vice-versa. Given the limited number of DD pairs, we use coarse binning to see

statistically meaningful e�ects. In Figs. 13, 14 and 15, we show the results for v = xF , y

and p2t , respectively. In part (a) of each �gure, we show the number of acceptance-corrected

DD signal events reconstructed in nine (vD; vD) bins | three vD bins times three vD bins.

Note that the three bin sizes are not equal. From the information in this two-dimensional

plot, several normalized one-dimensional plots are created, facilitating our ability to detect

di�erences in the shapes of the distributions. In particular, plot (b) in each �gure shows the

vD distribution for each vD bin, dNs
dvD

=Ni, where Ns is the number of events in the relevant

bin, and Ni is the total number of events in the three vD bins. This normalization is chosen

so that the integral over each vD distribution equals one. The symbols are de�ned in plot

(a). Similarly, plot (c) in each �gure shows the normalized vD distribution for each vD bin.

If the three sets of points in the �gures (b) and (c) are statistically consistent, there are

no signi�cant correlations. Lastly, plots (d){(f) simply rearrange the information shown in

(b) and (c). Plot (d) shows the normalized vD and vD distributions for the �rst vD and vD

bin, respectively; plot (e) shows results for the second bins; and plot (f) shows results for

the third bins. In (d)-(f), agreement of the two sets of points implies that correlations in
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vD are the same as correlations in vD. The two-dimensional plots show the actual number

of acceptance-corrected DD signal events in each bin, whereas the one-dimensional plots,

proportional to dNs
dvD

, take into account the variation in bin size.

Figure 13 indicates some correlation between xF;D and xF;D. In particular, the �rst-

bin distributions are more peaked at low xF than the second- and third-bin distributions

of �gures (b) and (c). This result is consistent with Fig. 8, discussed above, which shows

that the measured �xF distribution is somewhat steeper than the single-charm prediction.

Because xF and y are highly correlated, Fig. 14 shows the same trends as Fig. 13. Figure 15

indicates that p2t;D and p2
t;D

are also slightly correlated | the second-bin p2t;D and p2
t;D

distributions are enhanced in the second bin; and the third-bin p2t;D and p2
t;D

distributions

are enhanced in the third bin of �gures (b) and (c). This result should be compared with

Fig. 10, which is consistent with no correlation. Correlations are also seen in Fig. 12 which

shows that the measured p2
t;DD

distribution is somewhat steeper than the uncorrelated single-

charm prediction. In all three �gures (13{15), the shapes of the three vD distributions are

remarkably similar to the shapes of the respective vD distributions as seen in �gures (d){(f).

In Fig. 16 we investigate whether the separation in azimuthal angle between the D and D

is correlated to the amplitude of the transverse momenta of the D and D. In particular, we

determine the number of signal DD events per �� interval in �p2t intervals and the number

of signal DD events per �� interval in j�p2t j intervals. Although we �nd no signi�cant

correlation between �� and j�p2t j, we �nd that �� and �p2t are quite correlated. The ��

distribution is more peaked at large �p2t and the �p2t distribution is atter at large ��. A

theoretical explanation for these correlations is discussed in the following section.

C. Comparisons with Theory

In this section, we compare all the acceptance-corrected distributions discussed in the

previous two sections (Figs. 7{16) to three sets of theoretical predictions: the distributions

of cc pairs from a next-to-leading-order (NLO) perturbative QCD calculation by Mangano,
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Nason and Ridol� (MNR) [3,4]; the distributions of cc pairs from the Pythia/JetsetMonte

Carlo event generator [5] which uses a parton-shower model to include higher-order pertur-

bative e�ects [6]; and the distributions of DD pairs from the Pythia (Version 5.7)/Jetset

(Version 7.4) Monte Carlo event generator [5] which uses the Lund string model to trans-

form cc pairs to DD pairs [7]. For all theoretical predictions, we use the default parameters

suggested by the respective authors, which are discussed in the Appendix. All distributions

are obtained after excluding any candidates in which the center-of-mass rapidity of either

the D or D (or, for the MNR calculation, the c or c) is less than �0:5 or greater than 2.5.

1. Single-Charm Distributions

Lack of agreement between an experimental charm-pair distribution and a theoretical

prediction can arise if the theory does not model the correlations between the two charm

particles correctly. However, it can also arise if the theory models the correlations correctly

but does not correctly model the single-charm distributions. Hence, before comparing the

experimental charm-pair distributions to theory, we �rst compare the acceptance-corrected

single-charm distributions (xF , y, p
2
t and �) to theory in Fig. 17.

For the longitudinal momentum distributions | xF and y | the experimental results

and theoretical predictions based on the default parameters do not agree. The experi-

mental distributions are most similar to the NLO and Pythia/Jetset cc distributions,

but are narrower than all three. The di�erence between the Pythia/Jetset cc and the

Pythia/JetsetDD longitudinal distributions shows the e�ect of the hadronization scheme

that color-attaches one charm quark to the remnant beam and the other to the remnant

target, broadening the longitudinal distributions.

The experimental p2t distribution agrees quite well with all three theoretical distributions.

However, the Pythia/Jetset cc distribution is somewhat atter; the Pythia/Jetset DD

distribution is somewhat steeper. As expected, both the theoretical and experimental �

distributions are consistent with being at.
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2. Longitudinal Distributions for Pairs

The experimental and theoretical �xF and �xF distributions (Fig. 18) and �y and

�y distributions (Fig. 19) do not agree with theoretical predictions derived from default

parameters. This may be a reection of the disagreement between the measured single-charm

longitudinal distributions and theoretical models. As with the single-charm distributions, the

experimental results are much closer to the two cc predictions than to the Pythia/Jetset

DD prediction, but narrower than all three predictions. The Pythia/Jetset hadronization

scheme introduces a strong correlation between the D and D which signi�cantly broadens

the �y distribution. That is, hadronization tends to pull the DD apart, due to color string

attachment to the incident hadronic remnants. As we show in Fig. 20, the Pythia/Jetset

DD �y distribution is broader than the prediction we obtain by using the predicted single-

charm distributions and assuming they are uncorrelated, as calculated using Eqn. 9. In

contrast, the experimental �y distribution is slightly narrower than its uncorrelated single-

charm prediction (Fig. 9).

3. Transverse Distributions for Pairs

In Figs. 21{23, we compare experimental distributions to theoretical predictions for the

following transverse variables: j�p2t j, �p2t , ��, ��, and p2
t;DD

. Any observed discrepancy

between theory and data for the j�p2t j, ��, and p2
t;DD

distributions is noteworthy because

the single-charm p2t and � experimental distributions agree well with theory. An observed

discrepancy, therefore, must derive from the theory modeling the correlation between ~pt;D

and ~pt;D incorrectly.

If ~pt;D and ~pt;D were completely uncorrelated, then the single-charm predictions (Figs. 10{

12) would provide good estimates for these three distributions. At the opposite extreme, if

~pt;D and ~pt;D were completely anticorrelated | as in the leading-order perturbative QCD

prediction | then the �p2t distribution would be a delta function at �p2t = 0 GeV2; the
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p2
t;DD

distribution a delta function at p2
t;DD

= 0 GeV2; and the �� distribution a delta

function at �� = 180�. Both the experimental distributions and the three sets of theoret-

ical predictions lie between these extremes. None of the three experimental distributions,

however, is as steep as any of the theoretical predictions. The next-to-leading-order pre-

dictions are the steepest | that is, the next-to-leading-order calculation predicts the most

correlation between ~pt;c and ~pt;c as a model for ~pt;D and ~pt;D. Thus hadronization and higher-

order perturbative e�ects smear out the cc correlations. The Pythia/Jetset hadronization

scheme broadens the �� distribution, bringing it closer to the experimental results. The

same hadronization scheme also narrows the p2
t;DD

and �p2t distributions, which makes them

disagree even more with the experimental results. One mechanism which would broaden the

p2
t;DD

and �p2t distributions as well as the �� distribution (bringing all into better agree-

ment with the experimental results) is to increase the intrinsic transverse momentum of the

colliding partons in the beam and target hadrons (see the Appendix, Secs. A 5 and A6).

An improved theoretical understanding may involve adding terms higher than NLO to cal-

culations, although other authors �nd good agreement by choosing appropriate values for

nonperturbative parameters [42].

4. Charm-Pair Invariant Mass

In Fig. 23, we compare the experimental charm-pair invariant mass distribution to the

Pythia/Jetset prediction. The experimental MDD distribution is steeper than the theo-

retical predictions. This is similar to the experimental single-charm xF (or y) distributions,

which are also steeper than the theoretical predictions. (See Fig. 17.)

In addition, the correlations introduced by the Pythia/Jetset hadronization scheme

broaden the invariant mass distribution.
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5. Two-Dimensional Distributions

In Figs. 24{27, we examine the same two-dimensional experimental distributions dis-

cussed in Section VIB. We now compare these experimental results to the three sets of

theoretical predictions. In each �gure, the top row shows the NLO perturbative QCD cc

prediction; the middle row, the Pythia/Jetset cc prediction; and the bottom row, the

Pythia/Jetset DD prediction. The experimental data points and errors are repeated in

each row.

The longitudinal distributions, xF and y, are shown in Figs. 24 and 25. The three theo-

retical predictions are quite di�erent. The NLO cc predictions show no signi�cant correlation

between xF;D and xF;D (or between yD and yD) and the xF;D and xF;D distributions are quite

similar. The Pythia/Jetset cc predictions show a slight correlation and the xF;D and xF;D

distributions are somewhat di�erent. Due to the Pythia/Jetset hadronization scheme,

the Pythia/Jetset DD prediction shows the strongest correlation between xF;D and xF;D.

Interestingly, in the Pythia/Jetset DD prediction, xF;D and xF;D are anticorrelated; in

the Pythia/Jetset cc prediction they are positively correlated. The correlation patterns

in the experimental results, although inconsistent with any of the theoretical predictions,

are closest to the Pythia/Jetset cc predictions.

In Fig. 26, we investigate the correlations between p2t;D and p2
t;D
. The three theoretical

predictions and the experimental results all show similar trends. Although all the distrib-

utions are broader than the leading-order perturbative QCD prediction | a delta function

at p2t;D = p2
t;D

| they all shows signs of an enhancement in the p2t;D = p2
t;D

bins. The

Pythia/Jetset cc distributions and the Pythia/Jetset DD distributions are very simi-

lar and resemble the experimental results more so than the NLO cc distributions. All of the

theoretical third-bin distributions are signi�cantly atter than the experimental third-bin

distributions. In contrast to the longitudinal distributions, all the p2t;D distributions are very

similar to the respective p2
t;D

distributions.

In Fig. 27, we investigate correlations between �� and �p2t . For the �� dependence,

37



a leading-order perturbative QCD calculation predicts a delta function at �� = 180�. We

expect perturbative predictions to be more accurate as the energy scale Q of the partonic

hard scattering increases:

Q �
r
m2

c +
p2t;c + p2t;c

2
: (12)

That is, we expect the �� distribution to be more peaked at 180� for DD events with larger

�p2t . This behavior is clearly evident in our experimental distributions as well as in all three

theoretical predictions. The theoretical �� distributions, however, for all three �p2t bins,

are signi�cantly steeper than the respective experimental distributions. The NLO cc ��

distributions are the steepest. The experimental and theoretical �p2t distributions are in

fairly good agreement, with the �p2t distribution broadening as �� increases. No signi�cant

correlation between �� and j�p2t j or between �� and �y is seen in the data or theory.

D. Dependence of Yields and Longitudinal Correlations on Type of DD Pair

1. Relative Yields

In Table III, we compare the experimental yields for each type of DD pair to the predic-

tions from the Pythia/Jetset event generator and to a naive spin-counting model. The

experimental results are obtained by maximizing the weighted likelihood function where

the weights account for both acceptance e�ects and the relative branching fractions of the

reconstructed decay modes (Sec. VB). Again, for both data and Pythia/Jetset predic-

tions, the results are for pairs in which the rapidities of both the D and D lie between �0:5
and 2:5. The Pythia/Jetset and naive spin-counting models both assume that vector D�

production is three times more likely than pseudoscalar D production due to the number of

spin states and that contributions from higher spin states are negligible. They also use the

known D�� branching fractions, B(D�+ ! D0�+) = 68:3% and B(D�+ ! D+X) = 31:7%,

to determine D production. The di�erences between the Pythia/Jetset and naive spin-

counting model come from the Pythia/Jetset hadronization scheme | in particular, the
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rate of coalescence. As discussed in Sec. II B, a charm quark tied to a valence quark by a

low-mass string can coalesce with that valence quark into a meson. This will tend to in-

crease the rate of D�(cd) and D0(cu) production in the forward region for the E791 ��(ud)

beam. Since D�� decays to D0, production of D0 will also be enhanced. This e�ect is seen

in Table III where the number of pairs that contain a D+ is reduced while the number of

pairs that contain a D�;D0; or D0 is increased in the Pythia/Jetset model relative to

the naive model. Both models agree with data as far as the relative ordering but predict

too many D0D0 pairs and too few D+D� pairs.

2. Correlations Between the D and D Longitudinal Momenta

As shown in Fig. 28, in the Pythia/Jetset hadronization scheme, the correlation be-

tween yD and yD is quite di�erent for each of the four types of DD pairs. In Fig. 29, we

investigate whether this is also true for data. Given the limited size of our data sample,

we can only search for gross asymmetries in the (yD, yD) distributions. We obtain the four

plots in Fig. 29 by bisecting the two-dimensional (yD, yD) distributions along the following

four lines (v = a): �y = 0, �y = 1:2, yD = 0:6, and yD = 0:6. These four lines are indicated

by dashed lines in Fig. 28.

To search for possible di�erences in asymmetries, we determine whether the fraction of

signal events on one side of a given line depends on the type of DD pair. Speci�cally, for

both theory and data, we show in Fig. 29

Av(i) =
Ni(v > a)�Ni(v < a)

Ni(v > a) +Ni(v < a)
(13)

where i = (D0D0;D0D�;D+D0;D+D�) and Ni is the number of signal DD events of

type i. The Pythia/Jetset A�y distribution is fairly at, indicating no signi�cant dif-

ferences among the four DD types for the �y distribution. The Pythia/Jetset A�y,

AyD , and Ay
D
distributions, however, indicate signi�cant di�erences, all of which are easily

interpreted in terms of the Pythia/Jetset coalescence mechanism discussed in Sec. II.
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Unfortunately, our experimental errors are of the same order as the degree of di�erences in

the Pythia/Jetset predictions. The experimental AyD distribution, for example, is con-

sistent with the Pythia/Jetset prediction, but it is also consistent with being at. Sim-

ilarly, the experimental A�y distribution is fairly consistent with the at Pythia/Jetset

prediction, but it also shows some indication of a di�erence between D0D0 and D+D�.

The most signi�cant di�erence between the experimental results and the Pythia/Jetset

predictions occurs for the DD types D0D0 and D+D� in the Ay
D
distribution. Both

theory and data indicate a di�erence between D0D0 and D+D�; however, we �nd ex-

perimentally that Ay
D
(D0D0) > Ay

D
(D+D�), whereas the Pythia/Jetset model �nds

Ay
D
(D+D�) > Ay

D
(D0D0).

VII. CONCLUSIONS

We fully reconstructed 791� 44 true DD pairs after all background subtractions. This

is the largest such sample of charm pairs used in an analysis of the hadroproduction of cc to

date. The full reconstruction of the �nal states of both D mesons o�ers several advantages

over some of the previous studies that have used partially reconstructed D candidates. We

are able to correct the data for both detector ine�ciencies and for the branching fractions of

the observed decays so that the acceptance-corrected distributions represent the produced

mixture of D mesons, rather than the detected mixture. Because the �nal states are fully

reconstructed, we are able to calculate both the magnitude and direction of the D momenta.

Therefore, we are able to thoroughly investigate the degree of correlation between both the

transverse and longitudinal components of the momenta, with respect to the beam direction,

of the D and D.

We have compared all the measured acceptance-corrected distributions to predictions of

the fully di�erential next-to-leading-order calculation for cc production by Mangano, Nason

and Ridol� [3,4], as well as to predictions from the Pythia/Jetset Monte Carlo event

generator [5] for cc [6] and DD production [7].
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A. Transverse Correlations

Our measurements indicate that the transverse momenta of the D and D in charm-

pair events are correlated in several ways. (See Secs. VIB and VIC5.) The square of

the amplitudes of the D and D transverse momenta are slightly correlated (Fig. 15). The

directions of the D andD in the plane transverse to the beam axis are signi�cantly correlated

(Fig. 11). The separation in azimuthal angle, ��, is signi�cantly correlated with the sum

of the squares of the D and D transverse momenta, �p2t (Fig. 16). These features have

been observed by several other experiments [8{16]. Using the default parameters, the three

models yield the same trend in correlations as we �nd in data. The models also predict

that the relative transverse angles of the D and D are more correlated than we �nd in data

(Fig. 22). These results provide an opportunity to tune the default parameters, or add

higher order terms in the models, to obtain better agreement with data [42].

B. Longitudinal Correlations

Our measurements indicate that the longitudinal momenta of the D and D from charm-

pair events are slightly correlated. The measured �xF and �y distributions (Figs. 8{9) are

somewhat narrower than what one would predict from the observed single-charm predictions

assuming no correlations. The xF;D (yD) distribution depends on the value of xF;D (yD),

and vice-versa (Figs. 13{14).

The single-charm xF and y distributions from the three theoretical models do not agree

with each other or with the measured distributions (Fig. 17). The three models predict dif-

ferent correlations between the charm and anticharm longitudinal momenta (Figs. 24{25) |

the next-to-leading-order calculation predicts no signi�cant correlation; the Pythia/Jetset

cc prediction indicates a slight positive correlation; and the Pythia/Jetset DD prediction

indicates a strong negative correlation. The DD data agree best with the Pythia/Jetset

cc prediction. The disagreement between the models and the data might be corrected by
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adjusting the non-perturbative parameters in the models, or by adding higher order terms.

C. Dependence of Yields and Longitudinal Correlations on Type of DD Pair

The relative yields of the four types of charm pairs, D0D0, D0D�, D+D0, and D+D�, as

calculated in the Pythia/Jetset event generator, agree with data as far as their ordering

but disagree with regard to number of pairs produced, predicting too many D0D0 pairs

and too few D+D� pairs. (See Table III.) We studied the degree to which longitudinal

correlations depend on the type of DD pair in data and in the Pythia/Jetset event

generator. Although we see di�erences between data and the event generator (Fig. 29), the

statistical uncertainties on the measured correlations are too large to make any conclusive

statements.

D. Summary and Discussion

The charm-pair distributions presented in this paper provide an opportunity to extend

our understanding of charm production beyond what was previously possible with single-

charm and lower-statistics or partially reconstructed charm-pair distributions. The measured

distributions and observed correlations can be compared to the predictions of models, testing

assumptions in the models and providing discrimination among di�erent values for the free

parameters in the models. Some comparisons have been made in the paper and in the

Appendix.

Before comparing the measurements to predictions, we looked for correlations directly

in the charm-pair data by comparing the observed DD pair distributions with the convo-

lution of the measured single-charm distributions assuming no correlations. We �nd that

the charm-pair distributions are quite similar to the convoluted single-charm distributions,

indicating little correlation between the two charm mesons in an event, with the excep-

tion of the distributions for �� and p2
t;DD

. The �� distribution shows clear evidence of
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correlations, and the p2
t;DD

distribution is steeper than the uncorrelated single-charm pre-

diction. In addition, the data are consistent with possible small correlations in the �xF and

�y pair distributions, which are somewhat more peaked near zero than the single-charm

convolutions.

In the comparisons of the measured and predicted charm-pair distributions, we observe

less correlation between transverse momenta and di�erent correlations between longitudi-

nal momenta than theoretical models predict, for the default values of parameters in the

models. Work by other authors suggests a di�erent set of parameters might provide better

agreement [42]. Both the single-charm and charm-pair distributions agree best with the

predictions for charm quark (rather than D meson) production, possibly caused by an ac-

cidental cancellation of color-dragging and fragmentation e�ects. Also, the �� distribution

is more similar to the prediction of the NLO theory at higher �p2t .

In the Appendix, we investigate the sensitivity of single-charm and charm-pair distribu-

tions to various theoretical assumptions. We conclude that the predictions depend not only

on unknown parameters such as the mass of the charm quark and the intrinsic transverse

momentum of the partons that collide to form the cc pair, but also on the values of the

renormalization and factorization scales. The measurements reported here, and the charm-

pair measurements from photoproduction experiments, should allow the free parameters in

the theoretical models to be further constrained.
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APPENDIX A: THEORETICAL PREDICTIONS FOR CHARM-PAIR

DISTRIBUTIONS

In Sec. II, we introduced the theoretical framework used to describe the hadroproduction

of DD pairs. In particular, we discussed:

� the leading-order perturbative QCD description of the hadroproduction of cc pairs;

� higher-order perturbative corrections to the leading-order calculation;

� the addition of intrinsic transverse momentum to the hard-scattering partons that

collide to form the cc pair; and, lastly,

� the hadronization of cc pairs to observable DD pairs.

Using this framework, we investigate how sensitive single-charm and charm-pair distributions

are to various theoretical assumptions. All predictions discussed in this Appendix are for a

500 GeV/c �� beam incident on a nuclear target | the same beam-target as the data from

experiment E791 reported in this paper.

The Pythia/Jetset event generator depends on many parameters. Unless otherwise

mentioned, we use the default settings for all parameters. The next-to-leading order pertur-

bative QCD calculation depends on the following six parameters:

� the mass of the charm quark, mc,

� the beam and target parton distribution functions, f� and fN , respectively,

� �QCD, the free parameter that must be determined experimentally, which roughly

de�nes the mass scale below which quarks and gluons do not behave as independent,

free partons | that is, below which perturbative QCD calculations are no longer valid,

and
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� the renormalization and factorization scales, �R and �F .

The pairs of pion and nucleon parton distribution functions considered in this section, ob-

tained from the CERN computer library package PDFLIB [43], are listed in Table IV.

Parton distribution functions depend on the fraction x of the hadron momentum carried

by the hard-scattering parton, on both the factorization and renormalization scales, and on

�QCD. In the parton distribution functions accessible from PDFLIB, the renormalization

scale is de�ned to be the same as the factorization scale.

For each parton distribution function listed in Table IV, we specify the square of the

minimum factorization scale allowed, �20; whether the evolution equations were calculated to

leading-order (LO) or to next-to-leading order (NLO) and the value of �
(4)
QCD used in the �t.

Querying PDFLIB for the value of a parton distribution function at a scale below �0 gives

unde�ned results. The default set of parton distribution functions for the Pythia/Jetset

event generator is set (5) in Table IV; the default suggested by the authors of HVQMNR is

set (1).

When possible, we choose pion and nucleon distribution functions that are �t assuming

similar values for �QCD. For all predictions shown below, the �QCD used in the next-to-

leading order calculation of the partonic cross section is de�ned to be the same as the �QCD

used to extract the nucleon parton distribution function fN .

The degree to which the charm-pair distributions are sensitive to variations in �R and

�F gives an indication of how important higher-order corrections are; that is, an indication

of how much (or little) we can trust the �3s calculation. In general, one tries to minimize

higher-order contributions by choosing �R and �F to be of the same order as the energy scale

Q of the hard-scattering process. However, this scale cannot be de�ned unambiguously. One

reasonable choice is

Q �
r
m2

c +
p2t;c + p2t;c

2
: (A1)

The default setting for the Pythia/Jetset event generator is �R = �F = Q, leading to

factorization scales as low as the mass of the charm quark, mc, which by default is set to
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1.35 GeV. The parton distribution functions used by the Pythia/Jetset event generator,

however, are only de�ned for scales above 2 GeV. This problem is handled by setting the

parton distribution function to f(x; �0) for all factorization scales less than �0.

The suggested default for the HVQMNR program is �R = Q and �F = 2Q. Given their

suggested default for the mass of the charm quark of mc = 1:5 GeV, this choice ensures that

the factorization scale will never go below the minimum allowed scale, �0 =
p
5 GeV.

In Figs. 30{35 we show single-charm and charm-pair distributions for a wide range of

theoretical assumptions. When obtaining these theoretical predictions, we only allow charm-

pair events in which both charm rapidities are greater than �0:5 and less than 2:5. For the

HVQMNR generator, which does not hadronize the cc pair to charmed mesons, the cut is on

the charm quark rapidities. For the Pythia/Jetset generator, the cut is on the D meson

rapidities. In Table V, we show which generator (HVQMNR or Pythia/Jetset) and what

theoretical assumptions are used in each �gure.

The same set of single-charm and charm-pair distributions are shown in each �gure. Each

charm particle in a charm-pair event can be described using three variables. A common

choice of independent variables for single-charm analyses is xF , p
2
t , and �.

We ignore the latter variable because all theoretical predictions give a at � distribution.

Although xF and y are very correlated, we show predictions for both distributions. For each

single-charm variable v, we obtain predictions for two charm-pair distributions: �v = vc�vc
and �v = vc+vc. (�� is de�ned to be the minimum of j�c��cj and 360��j�c��cj.) As with
the single-charm � variable, we ignore the charm-pair �� variable because all theoretical

predictions give a at �� distribution. We do not, however, ignore the �� distribution

which is very sensitive to theoretical assumptions. Two other commonly used charm-pair

distributions that we examine are the square of the transverse momentum of the charm-pair,

p2t;cc = j~pt;c + ~pt;cj2, and the invariant mass of the charm-pair, Mcc.

The vertical axis of each distribution shown in Figs. 30{35 gives the fraction of single-

charm (charm-pair) events per variable v interval, 1
N

dN
dv , where N is the total number of

single-charm (charm-pair) events generated. The number of single-charm events generated
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is, of course, just twice the number of charm-pair events generated.

1. Sensitivity to Higher-Order Perturbative Corrections

In Fig. 30, we compare the complementary methods used by the HVQMNR program

and the Pythia/Jetset event generator to include higher-order perturbative corrections

to the leading-order partonic cross section. As discussed in the previous section, the

Pythia/Jetset event generator, beginning with leading-order matrix elements, uses par-

ton showers to include higher-order perturbative e�ects, whereas the HVQMNR program

calculates the next-to-leading order cc cross section. To more directly compare these two

approaches, we change three of the default Pythia/Jetset settings | mc, f
� and fN | to

match the default HVQMNR settings. (See Table V.) We obtain Pythia/Jetset cc distri-

butions assuming no intrinsic transverse momentum for the interacting partons, as well as

assuming �kt = 0:44 GeV which is the Pythia/Jetset default. As argued by T. Sj�ostrand,

the intrinsic transverse momentum may, at least in part, be seen as a replacement for gluon

emission that is truncated in the parton shower approach due to the introduction of an

energy scale below which the parton shower evolution is stopped [52]. In Fig. 30, we also

show the HVQMNR leading-order distributions to emphasize which distributions are, and

which are not, sensitive to higher-order corrections.

Figure 30 shows that higher-order perturbative corrections do not signi�cantly a�ect the

shapes of most of the single-charm and charm-pair distributions. That is, the HVQMNR

leading-order and next-to-leading predictions for all distributions are very similar | except

for the j�p2t j, ��, and p2t;cc distributions. In the leading-order calculation, these latter distri-
butions are delta functions | at 0 (GeV/c)2, 180�, and 0 (GeV/c)2, respectively | because

the leading-order charm and anticharm quark are back-to-back in the plane transverse to

the beam axis.

The next-to-leading order predictions and the parton shower prediction are also quite

similar. The j�p2t j and �� Pythia/Jetset distributions with no intrinsic transverse mo-
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mentum included, indicate that the parton shower evolution is playing a very small role. The

�� parton shower distribution, in particular, is closer to the leading-order delta-function

prediction than to the next-to-leading order prediction. Adding intrinsic transverse mo-

mentum, with �kt = 0:44 GeV, brings the Pythia/Jetset prediction very close to the

next-to-leading order HVQMNR prediction.

2. Sensitivity to the Mass of the Charm Quark

In Fig. 31, we investigate the degree to which the single-charm and charm-pair distri-

butions are sensitive to variations in the mass of the charm quark. All distributions are

obtained from HVQMNR NLO calculations using the default values for all parameters |

except for mc. Higher-order e�ects play a larger role as the charm-quark mass decreases be-

cause the ratio Q=�QCD decreases, where Q is the energy scale of the interaction (Eq. A1).

For the lightest charm-quark mass (mc = 1:2 GeV/c2), the single-charm xF and p2t distri-

butions are steepest because the outgoing charm quark can more easily radiate gluons; the

single-charm y distribution is less peaked near y = 0; and the invariant mass of the charm-

pair is signi�cantly steeper than the higher mass predictions. The increase in higher-order

e�ects for smaller mc is also evident in the �� distribution, which is attest for mc = 1:2

GeV/c2.

3. Sensitivity to Parton Distribution Functions

In Fig. 32, we investigate the degree to which the single-charm and charm-pair dis-

tributions are sensitive to variations in the parton distribution functions and �QCD. All

distributions are obtained from HVQMNR NLO calculations using the default values for

all parameters | except for the parton distribution functions. We examine predictions for

four pairs of pion and nucleon parton distribution functions, sets (1) through (4) de�ned in

Table IV.
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At �xed-target energies, the dominant contribution to the cc cross section is from gluon

fusion. In Fig. 36, we compare the gluon distribution functions fg for sets (1) through (4).

By energy conservation, the energy of the two colliding partons must be at least twice the

mass of a charm quark to produce a cc pair; that is,
p
x�xN � 2mcp

s
where

p
s = 30:6 GeV is

the center-of-mass energy of the colliding hadrons. Hence, for each set, the pion and nucleon

functions are obtained after imposing the constraint x�xN � 4m2
c

s . We impose this constraint

because we want to investigate how the four sets compare in the region of x that we explore,

not in the very low x region where the functions are largest.

Although the four sets of parton distribution functions di�er signi�cantly, the single-

charm and charm-pair distributions shown in Fig. 32 are not very sensitive to these di�er-

ences. The sensitivity of the �� distribution is due to the variation in �QCD in sets (1)

through (4) (see Table IV). As the value of �QCD increases, the ratio Q=�QCD decreases,

where Q is the energy scale of the interaction (Eq. A1), causing higher-order e�ects to play

a larger role. Hence, the attest �� distribution results from using Set (4) (�
(4)
QCD = 300

GeV); the steepest �� distribution, from using set (3) (�
(4)
QCD = 100 GeV).

4. Sensitivity to Factorization and Renormalization Scales

In Fig. 33, we investigate the degree to which the single-charm and charm-pair dis-

tributions are sensitive to variations in the renormalization and factorization scales. All

distributions are obtained using the HVQMNR NLO calculation. We set the two arbitrary

scales equal to each other, � � �F = �R, and obtain distributions for � = Q=2, Q, and

2Q, where Q gives the energy scale of the interaction (Eq. A1). We use the GRV parton

distribution functions for both the pion and the nucleon (set (2) in Table IV), which have

been evolved down to �20 = 0.3 GeV2. With this choice, the factorization scale � can go as

low as mc=2 without going below �0. As mentioned, the degree to which the distributions

are sensitive to variations in the renormalization and factorization scales gives an indication

of how much (or little) we can trust the �3s calculation. As expected, the distributions that
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are most sensitive to variations in � are those distributions that are trivial at leading-order:

j�p2t j, ��, and p2t;cc. The smaller the factorization and renormalization scales, the broader

these distributions are. That is, the higher-order �3 terms play a larger role, compared to

the leading-order �2 terms, as renormalization and factorization scales decrease. The sensi-

tivity of these scales indicates that the model may have several ways of obtaining accurate

predictions, both by adjusting the model's parameters, and by adding higher order terms.

5. Sensitivity to Higher-Order Nonperturbative E�ects

In Fig. 34, we look separately at the e�ects of parton showers, intrinsic transverse mo-

mentum, and hadronization. All distributions are obtained using the Pythia/Jetset event

generator. The distributions obtained using the default settings (solid) include all three ef-

fects. We compare these default distributions to three sets of distributions that are obtained

by including:

� only hadronization, but no parton shower evolution or intrinsic transverse momentum

(solid);

� only the parton shower evolution, but no intrinsic transverse momentum or hadroniza-

tion (dashed);

� only intrinsic transverse momentum, but no hadronization or parton shower evolution

(dotted).

For the longitudinal momentum distributions (xF , �xF , �xF , y, �y, �y), the most im-

portant factor is whether or not hadronization is included. The two sets of distributions

that include hadronization e�ects are quite similar; the two sets of distributions that do

not include hadronization e�ects are similar; but the latter two sets of distributions di�er

signi�cantly from the former two sets. In the Pythia/Jetset hadronization model, the

broadening of the longitudinal momentum distribution is the result of color-connecting the

50



charm quark to a valence antiquark (or diquark) from one of the colliding hadrons and the

anticharm quark to a valence quark from the other colliding hadron.

All three higher-order e�ects broaden the leading-order delta function prediction for the

�� distribution. The broadening due to the parton shower evolution, however, is signi�-

cantly smaller than the broadening due to either the hadronization process or the addition

of intrinsic transverse momentum (�kt = 0:44 GeV=c). The latter two e�ects broaden the

�� distribution by roughly the same amount.

All three higher-order e�ects also broaden the leading-order delta function prediction

for the p2t;cc distribution. In this case, however, the broadening due to the parton shower

evolution is larger than the broadening due to either hadronization e�ects or the addition

of intrinsic transverse momentum (�kt = 0:44 GeV=c).

6. Sensitivity to Intrinsic Transverse Momentum

In Fig. 35, we investigate the degree to which the single-charm and charm-pair distri-

butions are sensitive to variations in the amount of intrinsic transverse momentum added

to the hard-scattering partons that collide to form a cc pair. All distributions are obtained

from the Pythia/Jetset event generator, with default settings for all parameters except

for the width of the Gaussian intrinsic transverse momentum distribution, �kt .

When intrinsic transverse momentum is included, the hard-scattering partons from the

colliding hadrons are no longer necessarily moving parallel to the colliding hadrons. The

plane that is transverse to the axis of the parton-parton collision | which cannot be deter-

mined experimentally | is no longer the same as the plane that is transverse to the beam

axis. Hence, including intrinsic transverse momentum smears the leading-order prediction

~pt;c = �~pt;c. Not surprisingly, the distributions that are most sensitive to variations in �kt

are those transverse distributions that are trivial at leading-order: j�p2t j, ��, and p2t;cc. As

the width �kt increases, these distributions become atter.
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7. Summary

In this section, we briey summarize the results of the comparisons shown in Figs. 30{35.

The longitudinal momentum distributions | xF , �xF , �xF , y, �y, and �y | are

relatively insensitive to all variations considered above, except for inclusion or omission of the

Pythia/Jetset hadroproduction hadronization (Fig. 34). The steepness of the invariant

mass distribution is also sensitive to whether or not hadronization is included, as well as

to the mass of the charm quark (Fig. 31). Therefore, the measured distributions for these

physics variables, discussed in Sec. VI, provide a test of the Pythia/Jetset hadronization

model | in particular, a test of the string topology scheme that color-connects the charm

quark to a valence quark from one of the colliding hadrons and the anticharm quark to a

valence quark from the other colliding hadron.

The transverse distributions j�p2t j, �p2t , ��, and p2t;cc are sensitive to almost all variations
considered above because they are sensitive to the degree of correlation between the charm

and anticharm transverse momenta. Varying mc (Fig. 31), �QCD (Fig. 32), or �R (Fig. 33)

in the next-to-leading order calculation changes the de�nition of the running coupling con-

stant �s, which is approximately proportional to 1= ln(�R=�QCD). As the coupling constant

increases | that is, as mc decreases, �QCD increases, or �R decreases | higher-order ef-

fects play a larger role, and consequently the charm and anticharm transverse momenta

become less correlated. The other methods we discussed for including higher-order e�ects

were parton showers, intrinsic transverse momentum, and hadronization.

In Sec. VI, we quantify the degree of correlation between the transverse momenta of

the D and D mesons from our DD data sample. The sensitivity of the NLO predictions

to the arbitrary renormalization and factorization scales (Fig. 33) indicates that higher-

order perturbative corrections are important. In principle, one could determine the sets of

theoretical parameters that generate predictions that are in good agreement with the full

range of experimental results. The set of �t values chosen, however, may not be unique.

The �t values of (e.g., the mass of the charm quark) would depend on the values of the
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renormalization and factorization scales. For example, if a renormalization scale of Q=2,

rather than Q, is assumed, then a smaller value for �kt or a larger value for mc could each

be used to �t the data.
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TABLES

TABLE I. Summary of fully-reconstructed and partially-reconstructed charm-pair samples from

hadroproduction and photoproduction �xed-target experiments. In the last column, we list the

physics variables studied in each experiment. The variables are de�ned in the text.

Experiment Beam Energy (GeV), Number of Pairs Measured Pair

Beam Type, and Target Reconstructed Variables

E791 500 �� 791 fully ��, j�~ptj2, �p2t , �p2t , correlations,
(this paper) Pt, C �xF , �xF , �y, �y, MDD

,

�
D0D

0 : �D0D� : �
D+D

0 : �D+D�

WA92 [8] 350 �� 475 partiallya ��, j�~ptj2, MDD
,

Cu �xF , �xF , �y

E653 [9] 800 p 35 partially ��, j�~ptj2,
emulsion �y, M

DD
, cos �cm

NA32 [10] [11] 230 �� 20 fully j�~ptj2, �y, MDD

(ACCMOR) Cu 642 partially j�~ptj2, �y, MDD
, ��

WA75 [12] 350 �� 177 partially ��, �y

emulsion 120 partially M
DD

, �xF , �p
2
t

NA27 [13] 400 p 17 fully j�~ptj2, �xF , �y, MDD

(LEBC) H2 107 partially ��,

�D0 �D0 : �D0D�+D+D0 : �D+D�

NA27 [14] 360 �� 12 fully j�~ptj2, �xF , �y, MDD

(LEBC) H2 53 partially ��

E687 [15] 200  325 fully ��, j�~ptj2, �y, MDD

Be 4534 partially ��, �y, M
DD

NA14/2 [16] 100  22 fully ��, j�~ptj, �pz, �y, MDD

Si

a In one of the 475 pairs, both D's are fully reconstructed.
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TABLE II. Characteristics of the DC tracking chambers for E791. \View" refers to the coor-

dinate measured by that plane, with u = +20:5�, v = �20:5� and x0 staggered by one-half a wire

spacing relative to the x plane. The e�ciency is for the region outside the central ine�cient area.

Station D1 D2 D3 D4

Approximate size (cm) 130 � 75 280 � 140 320 � 140 500 � 250

Number of substations 2 4 4 1

Views per substation x; x0; u; v u; x; v u; x; v u; x; v

u and v cell size (cm) 0.446 0.892 1.487 2.974

x cell size (cm) 0.476 0.953 1.588 3.175

z position of �rst plane 142.4 381.4 928.1 1738.

z position of last plane 183.7 500.8 1047.1 1749.2

Approximate resolution (�m) 430 320 260 500

Typical e�ciency 92% 93% 93% 85%

TABLE III. Normalized acceptance-corrected experimental yields for the four types of DD pairs

compared to predictions from a naive spin-counting model and the Pythia/Jetset event generator.

Experimental and Pythia/Jetset yields are for �0:5 < yD;D < 2:5.

Data Spin-counting model Pythia/Jetset

D0D0 0:50� 0:03 0.572 0:604 � 0:002

D0D� 0:20� 0:02 0.184 0:208 � 0:002

D+D0 0:18� 0:02 0.184 0:138 � 0:002

D+D� 0:12� 0:01 0.060 0:051 � 0:001
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TABLE IV. The pairs of pion and nucleon parton distribution functions considered in this Ap-

pendix, obtained from the CERN FORTRAN package PDFLIB. The functions have been extracted

from �ts to data assuming a �xed value of �QCD. The functions are unde�ned below the minimum

scale �0

Set Name �20[GeV
2] �

(4)
QCD [MeV] Order Ref.

(1)a f� SMRS-P2 5 190 NLO [44]

fN HMRS-B (4.90) 5 190 NLO [45]

(2) f� GRV-P 0.3 200 NLO [46]

fN GRV 0.3 200 NLO [47]

(3) f� SMRS-P2 5 190 NLO [44]

fN HMRS-B (8.90) 5 100 NLO [48]

(4) f� ABFKW-P3 2 281 NLO [49]

fN HMRS-B (8.90) 5 300 NLO [48]

(5)b f� OW-P1 4 200 LO [50]

fN CTEQ 2L 4 190 LO [51]

aHVQMNR suggested default.

bPythia/Jetset default.
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TABLE V. The settings used by the HVQMNR and Pythia/Jetset generators to obtain the

single-charm and charm-pair distributions shown in Figs. 30-35. The set of pion and nucleon parton

distribution functions (PDF), labeled (1) through (5), are de�ned in Table IV. A \Y" indicates that

parton showers (PS) are included in the Pythia/Jetset event generator; an \N" indicates that

they are not included. The last column describes the histogram style corresponding to the settings

in that row, in the �gure listed in the second to last column.

mc �kt

Generator PDF �R=Q �F =Q [GeV] [GeV] PS Figure

MNR NLO a (1) 1.0 2.0 1.5 0 30 solid

MNR LO b (1) 1.0 2.0 1.5 0 dashed

P/J cc c (1) 1.0 1.0 1.5 0 Y dotted

P/J cc (1) 1.0 1.0 1.5 0.44 Y solid

MNR NLO (1) 1.0 2.0 1.5 0 31 solid

MNR NLO (1) 1.0 2.0 1.2 0 dashed

MNR NLO (1) 1.0 2.0 1.8 0 dotted

MNR NLO (1) 1.0 2.0 1.5 0 32 solid

MNR NLO (2) 1.0 2.0 1.5 0 dashed

MNR NLO (3) 1.0 2.0 1.5 0 dotted

MNR NLO (4) 1.0 2.0 1.5 0 solid

MNR NLO (2) 0.5 0.5 1.5 0 33 solid

MNR NLO (2) 1.0 1.0 1.5 0 dashed

MNR NLO (2) 1.5 1.5 1.5 0 dotted

P/J DD d (5) 1.0 1.0 1.35 0.44 Y 34 solid

P/J cc (5) 1.0 1.0 1.35 0 Y dashed

P/J cc (5) 1.0 1.0 1.35 0.44 N dotted

P/J DD (5) 1.0 1.0 1.35 0 N solid

P/J DD (5) 1.0 1.0 1.35 0.44 Y 35 solid

P/J DD (5) 1.0 1.0 1.35 0.7 Y dashed

P/J DD (5) 1.0 1.0 1.35 1.0 Y dotted

P/J DD (5) 1.0 1.0 1.35 1.5 Y solid

aNLO refers to the default next-to-leading order HVQMNR distributions.

bLO refers to the default leading-order HVQMNR distributions.

ccc refers to the default Pythia/Jetset cc distributions.

dDD refers to the default Pythia/Jetset DD distributions.
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FIG. 1. Scatter plots of yc vs. yc and yD vs. yD, from 100,000 Pythia/Jetset cc and DD

events, showing the correlation introduced by the hadronization model. As discussed in Sec. IV, we

only reconstruct DD events in the region �0:5 < yD;D < 2:5.

FIG. 2. The E791 spectrometer.
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Pythia/Jetset D meson prediction (���������).
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FIG. 24. (a) The NLO QCD prediction for the number of cc events in nine (xF;D, xF;D) bins,

normalized such that the number of NLO events equals the number of weighted DD signal events.

(b) Experimental xF;D distribution for each xF;D bin compared to the NLO QCD predictions. Each

xF;D distribution is normalized such that the integral over xF;D equals one. (c) Same as (b) for

the xF;D distributions. (d)-(f) Same as (a)-(c) for the Pythia/Jetset cc prediction. (g)-(i) Same

as (a)-(c) for the Pythia/Jetset DD prediction. Symbols represent weighted data; histograms

represent theoretical predictions. 4 and || correspond to the low bin; � and ���� to the middle

bin; 2 and ��������� to the high bin.
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FIG. 25. (a) The NLO QCD prediction for the number of cc events in nine (yD, yD) bins,

normalized such that the number of NLO events equals the number of weighted DD signal events.

(b) Experimental yD distribution for each yD bin compared to the NLO QCD predictions. Each

yD distribution is normalized such that the integral over yD equals one. (c) Same as (b) for the yD

distributions. (d)-(f) Same as (a)-(c) for the Pythia/Jetset cc prediction. (g)-(i) Same as (a)-(c)

for the Pythia/Jetset DD prediction. Symbols represent weighted data; histograms represent

theoretical predictions. 4 and || correspond to the low bin; � and ���� to the middle bin; 2

and ��������� to the high bin.
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FIG. 26. (a) The NLO QCD prediction for the number of cc events in nine (p2t;D, p
2
t;D

) bins,

normalized such that the number of NLO events equals the number of weighted DD signal events.

(b) Experimental p2t;D distribution for each p2
t;D

bin compared to the NLO QCD predictions. Each

p2t;D distribution is normalized such that the integral over p2t;D equals one. (c) Same as (b) for

the p2
t;D

distributions. (d)-(f) Same as (a)-(c) for the Pythia/Jetset cc prediction. (g)-(i) Same

as (a)-(c) for the Pythia/Jetset DD prediction. Symbols represent weighted data; histograms

represent theoretical predictions. 4 and || correspond to the low bin; � and ���� to the middle

bin; 2 and ��������� to the high bin.
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FIG. 27. (a) The NLO QCD prediction for the number of cc events in nine (��, �p2t ) bins,

normalized such that the number of NLO events equals the number of weighted DD signal events.

(b) Experimental �� distribution for each �p2t bin compared to the NLO QCD predictions. Each

�� distribution is normalized such that the integral over �� equals one. (c) Same as (b) for the �p2t

distributions. (d)-(f) Same as (a)-(c) for the Pythia/Jetset cc prediction. (g)-(i) Same as (a)-(c)

for the Pythia/Jetset DD prediction. Symbols represent weighted data; histograms represent

theoretical predictions. 4 and || correspond to the low bin; � and ���� to the middle bin; 2

and ��������� to the high bin.
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FIG. 28. Pythia/Jetset prediction for the (yD, yD) distribution for each of the four types of

DD pairs. The dashed lines help de�ne the asymmetry functions Av(i) (Eq. 13) shown in Fig. 29.
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FIG. 29. The asymmetry function Av(i) =
Ni(v>a)�Ni(v<a)
Ni(v>a)+Ni(v<a)

, where i =(D0D0, D0D�, D+D0,

D+D�) and Ni is the number of signalDD events of type i, for (v, a) = (�y, 0), (�y, 1:2), (yD, 0:6),

and (yD, 0:6). Both the weighted data (open symbols) and the Pythia/Jetset (closed symbols)

distributions correspond to events in which �0:5 < yD; yD < 2:5.
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FIG. 30. Sensitivity of single-charm and charm-pair distributions to higher-order perturbative

corrections. The LO (dashed) and NLO (solid) distributions are obtained from the HVQMNR

generator; the parton-shower distributions, with (solid) and without (dotted) intrinsic transverse

momentum, from the Pythia/Jetset generator. See Table V.
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FIG. 31. Sensitivity of single-charm and charm-pair distributions to variations in the mass of

the charm quark. All distributions are obtained from HVQMNR NLO calculations with the default

values for all parameters except mc. The values of mc used are 1.5 GeV (solid), 1.2 GeV (dashed)

and 1.8 GeV (dotted). See Table V.
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FIG. 32. Sensitivity of single-charm and charm-pair distributions to variations in the parton

distribution functions. Sets (1) (solid), (2) (dashed), (3) (dotted) and (4) (solid) are de�ned in

Table IV. All distributions are obtained from HVQMNR NLO calculations with the default values

for all parameters except the parton distribution functions. See Table V.
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FIG. 33. Sensitivity of single-charm and charm-pair distributions to variations in the factoriza-

tion and renormalization scales. All distributions are obtained from HVQMNR NLO calculations.

Rather than using the default set of parton distribution functions, we use the GRV functions, which

are evolved down to �20 = 0.3 GeV2. The values of �0=Q used are 0.5 (solid), 1.0 (dashed) and 1.5

(dotted). The energy scale Q is de�ned in Equation A1. See Tables IV and V.

85



FIG. 34. Sensitivity of the single-charm and charm-pair distributions to the parton shower

evolution (PS), the addition of intrinsic transverse momentum, and the hadronization process.

All distribution are obtained from the Pythia/Jetset event generator. The solid distributions

include all three e�ects; the dashed distributions include only the parton shower evolution; the

dotted distributions include only intrinsic transverse momentum; the solid distributions include

only hadronization. See Table V.
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FIG. 35. Sensitivity of single-charm and charm-pair distributions to variations in the amount of

intrinsic transverse momentum added to the hard-scattering partons. All distributions are obtained

from the Pythia/Jetset event generator, with default settings for all parameters except �kt . The

values of �kt used are 0.44 GeV/c (solid), 0.7 GeV/c (dashed), 1.0 GeV/c (dotted) and 1.5 GeV/c

(solid). See Table V.
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FIG. 36. Comparison of the gluon distribution functions for sets (1) through (4), de�ned in

Table IV. The pion and nucleon functions for each set are obtained from PDFLIB after imposing

the constraint
p
x�xN � 2mcp

s
, where

p
s is the center-of-mass energy of the colliding hadrons. The

left plot shows the pion and nucleon gluon distribution functions for set (1). The middle and

right plots show, for the pion and nucleon, respectively, the asymmetries between the set (1) gluon

distribution function and each of the other three (n=2-4) gluon distribution functions.
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